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ABSTRACT 

A review of the literature suggests that there are few studies on the efficiency of academic 

research and development (R&D) funding in the United States. Much of the extant literature 

focuses on efficiency assessments at either the academic department level or the university level. 

We are not aware of any studies that analyze the efficiency of academic R&D funding at the state 

level. The purpose of this paper is to fill this void by assessing the efficiency of academic R&D 

funding at the state level using Data Envelopment Analysis (DEA), a non-parametric efficiency 

estimation method that can utilize multiple inputs and outputs to create a single efficiency score. 

The DEA results, along with results in changes in R&D productivity over time, suggest that some 

U.S. states are relatively better positioned to turn their R&D dollars into academic and business 

outputs. Tennessee is used as an example to show how to apply the DEA results to guide policy 

decisions toward efficiency. Tobit model results imply that the diversity of funding source, 

university R&D intensity, and R&D concentration are key for R&D funding efficiency. The policy 

implications of the study findings are discussed.  

Keywords: Data envelopment analysis (DEA), research and development (R&D), academic 

efficiency, Tobit model 

INTRODUCTION 

Research and development (R&D) funding at universities provides the groundwork for 

increases in local business outputs and economic growth. Following the Arik and Ndrianasy (2018) 

conclusion that high levels of R&D funding on the state level often correlate with high state Gross 

Domestic Product (GDP) levels, and with the knowledge that R&D funding leads to business 

outputs, this paper investigates the efficiency with which universities utilize funding to create these 

growth-oriented outputs on the state level. This paper aims to create a model for estimating the 

technical efficiency and productivity growth of state-level R&D funding during the period 2006–

2015. To this end, we created a Data Envelopment Analysis (DEA) model to determine efficiency, 

a Malmquist Index to calculate overall productivity increases, and a Tobit model using the DEA 

efficiency scores to uncover the determinants of efficiency. 

The DEA model has been widely used since the early 2000s to evaluate the efficiency of 

multiple decision-making units (DMUs), from hotels to universities (Emrouznejad and Yang, 

2018). The DEA model has many advantages, outlined in Section 2 below, but central to this paper 

is its ability to create an efficiency frontier from the data. This efficiency frontier is made up of 

efficient DMUs, as determined by the model, and can be used as a guide toward efficiency for 
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DMUs that are not on the efficiency frontier. The efficiency frontier, much like a production 

frontier, does not assume that one set of inputs and outputs is the best way to achieve efficiency; 

instead, it allows for many efficient combinations (Cooper et al., 2006). 

In this paper, we created an output-oriented DEA model determining the efficiency of R&D 

funding to universities in creating business outputs. Different from what had been done in previous 

studies, we modeled R&D funding efficiency at the state level rather than at the academic 

department or university level. The state-level analysis provides new insights as it is the state 

economies, rather than universities themselves, that receive the benefits from the efficient transfer 

of R&D funding into business outputs, including startups and science and engineering graduate 

students. States, then, should be concerned about their universities’ efficiencies as a whole and 

how they compare to other states with the goal of striving toward higher levels of efficiency. Our 

DEA model will serve to provide a new framework for R&D funding efficiency, and as we use a 

time frame of about ten years, historical comparisons and state comparisons will give decision 

makers new information about the efficiency of universities at the state level. 

Additionally, though it has many sources, R&D funding comes primarily from private 

industry and the federal government (National Science Foundation). Any new insight into 

academic R&D efficiency will provide support for efficient states to prove that they can indeed 

turn increases in industry or federal R&D funding into business outputs. On the other hand, 

inefficient states apply a DEA model like the one provided below to determine how best to become 

efficient based on our DEA model’s specified outputs. 

With the knowledge that academic R&D plays a role in growing regional economies, the 

study of the logistics and efficiencies of R&D funding to universities will provide a foundation for 

understanding and improving the academic community’s positive impact on the business 

community at the state level. Moreover, data on state-level R&D efficiencies can aid state- and 

federal-level decision makers as they determine which states receive federal R&D funding. 

The paper is organized as follows. Section 2 discusses the background of DEA usage in 

various disciplines. Section 3 describes the methodology and research questions used by the 

models for efficiency estimates, productivity changes, and Tobit regression. The results are 

presented in Section 4. In Section 5, implications and limitations are discussed. Section 6 

concludes the paper. 

 

BACKGROUND 

 

Academic R&D Overview 

Academic R&D is an important determinant of GDP growth at the state level (Arik and 

Ndrianasy, 2018). Although total dollar amounts spent on academic R&D are important, whether 

the states use those academic research dollars efficiently has not received enough attention in the 

literature. As laid out in Table 1, Federal University R&D spending in the U.S. was around $37.9 

billion in 2015, representing about 0.21 percent of the U.S. GDP, a decline from 0.25 percent in 

2010. Because a significant amount of taxpayer dollars is invested in the process, an examination 

of the issue at the state-level rather than the university-level has important public policy 

implications.  
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DEA Literature Review 

Data Envelopment Analysis (DEA) modeling is widely used to measure the relative 

efficiency of decision-making units (DMUs). Over the years, the number of published studies 

using DEA as a method of analysis has grown dramatically, as shown in Figure 1 below. The 

recent trend suggests that the top five heavily-focused topical areas are agriculture, banking, supply 

chain, transportation, and public policy (Emrouznejad and Yang, 2018). 

A careful review of the titles of approximately 11,000 articles related to DEA reveals that 

a small fraction (83) of those articles deals strictly with either R&D efficiency in general or 

university-related efficiency measures. Among those 83 articles, only a handful are directly related 

to academic R&D at the state level. Table 2 breaks down the types of R&D efficiency-related DEA 

articles.  

 

Fig. 1: Distribution of DEA-related articles by year (1978–2016). Source: Emrouznejad and 

Yang (2018) 
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DEA is a non-parametric mathematical procedure used to measure and assess the efficiency 

of a DMU, such as a firm or a university, when compared to other DMUs in the same category. 

DEA uses input and output ratio data for the DMUs to construct relative efficiency scores for all 

DMUs and from those scores creates an efficiency frontier. Efficiency scores range from zero (0) 

to one (1), with one (1) marking efficiency and all other scores marking inefficiency. DMUs on 

the efficiency frontier have a score of one (1), and efficient DMUs become the “benchmark” peers 

for the inefficient DMUs. For each inefficient DMU, based on its input-output data, at least one 

efficient peer DMU is calculated. That peer can be a guide toward efficiency, for example, by 

showing that an increase in a particular output would be the best choice. The goal of using DEA 

is to provide data that will show inefficient DMUs how to perform more efficiently with their 

available resources (Cooper et al., 2006). 

“DEA has two primary advantages: It does not require a specification of either the 

production function form or the weights of different inputs and outputs, and it provides detailed 

information on the efficiency of the unit relative to specific efficient units as comparators” (Chen 

et al., 2011). Variations on the DEA model structure have been made, including those that re-

evaluate efficient DMUs to determine if inputs can be even further decreased (Zhu, 2001) and 

those that use hierarchal methods to evaluate better the input-output combinations themselves 

(Inoue et al., 2015). DEA is widely used in areas such as manufacturing, banking, education, health 

care, management evaluation, and commerce.  

In a broader application, DEA can be used to evaluate data in fuzzy environments. Fuzzy 

set theory is a method to quantify imprecise and vague data in DEA models. When compared with 

fuzzy linear programming, the efficiencies of DEA proved the better measurement for quantifying 

fuzzy data. The subsequent results of this comparison introduced the possibility for using a new 

α-level based approach and a numerical method for ranking DMUs with fuzzy data (Raeinojehdehi 

and Valami, 2016). In a fuzzy environment, different decision makers have different attitudes 

toward which inputs they want to evaluate. The significance of using a fuzzy number is that the 

decision-makers can make decisions based on their own preferences and in real-world situations. 

DEA evaluations make it possible for decision-makers to use the information they select (Chen 

and Wang, 2016; Liu, 2011).  

DEA has been successfully used in many studies in the following ways: 
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Industry 

In the travel industry, DEA has been used to evaluate the efficiency of hotels (Lei and Liu, 

2018), airliners (Pisarek and Zoltaszek, 2016), and cruise ships (Demirer et al., 2017). A common 

finding in these studies is that increasing the size of the DMU often does not translate to increased 

efficiency.  

In health care, nonprofits such as the Red Cross, large health care systems, and individual 

hospitals have been evaluated using DEA to determine inefficiencies (Rauner and Sommersguter-

Reichmann, 2015; Abeney and Yu, 2015; Chen et al., 2011). In the insurance industry, DEA 

provided insight into microinsurance, showing that due to the wide variety of program 

performance, a comprehensive “best practice” benchmark is needed (Biener and Eling, 2011). 

In the banking and finance industries, DEA has been used to determine institutional 

efficiencies in banking in Nigeria (Avinde, 2017), to help managers monitor exchange and interest 

rates (Zakaria, 2017), and to show that the overall efficiency scores of IPO firms are dismal (Anjum 

and Sohail, 2016).  

Despite their complexity, DEA has also been used to pinpoint inefficiencies in supply 

chains (Chern and Chou, 2016) and to determine efficiencies in areas lacking research attention, 

such as sports sponsorships (Bijmolt et al., 2016). DEA has been validated as an appropriate 

method for “identify[ing] efficient discrete-event simulation software” (Lall and Moreno, 2011) 

and has even been used to formulate a new method for calculating the human development index 

(Eren et al., 2017). 

 

Academic Institutions 

DEA has the ability to rank overall measure of quality, an important measure for higher 

education, and the DEA method has been validated in many papers as suitable for the assessment 

of higher education institutions (Bougnol and Dulá, 2006; Johnes, 2006). In many studies and in 

various countries, DEA is used to determine the efficiency scores of academic institutions with 

multiple specifications. Among country-level studies are those in South Africa (Taylor and Harris, 

2004), the Czech Republic (Mikusova, 2015), England (Bradley et al., 2010; Thanassoulis et al., 

2011), Canada (Datta and McMillan, 1998), Turkey (Bursalioglu and Selim, 2013), France (Barros 

et al., 2011), and Europe as a region (Veiderpass and Mckelvey, 2016).  

 Some additional applications of  DEA in institutions of higher education include 

determining “best buy” universities (Eff et al., 2012), “improving estimates of per-student 

education costs” (Salerno, 2006), evaluating a country’s “perceived” top universities and liberal 

arts colleges (Breu and Raab, 1994; Eckles, 2010), evaluating a country’s top business schools 

(Palocsay and Wood, 2014), and determining efficiencies of specific academic departments 

(Cimpoies et al., 2016; Dogan et al., 2014; Duguleana and Duguleana, 2015). A common theme 

among these studies is providing a scientific method for ranking institutions rather than relying 

solely on subjective or survey rankings. 

 

Academic R&D 

In addition to DEA studies that focus on higher education institutions themselves, DEA 

has also been used to determine the efficiency of those institutions’ outputs, namely R&D outputs. 

DEA has been verified as an appropriate tool for quantifying research efficiency in academia, 
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identifying benchmarks, and contrasting research efficiency with other traditional rankings 

(Korhonen et al., 2011; Munoz, 2016). As with studies of academic institutions, DEA-based 

academic R&D efficiency analyses involve many specifications. Among country-level studies 

published are a Taiwanese study of team communication and its relevance to academic R&D 

efficiency (Hung et al., 2013), several Chinese investigations into general research performance 

(Chuanyi et al., 2016; Johnes and Yu, 2008; Ng and Li, 2000), a study of “efficiency and 

technological change” for U.S. universities (Barham et al., 2011), and one in Malaysia examining 

measures for “knowledge management performance” (Kuah and Wong, 2013). 

Other regional or multi-country studies have been realized as researchers attempt to 

uncover different facets of academic R&D efficiency by changing the scope of their analysis. 

These include studies of a single Italian region (Agasisti et al., 2011), of incoming European Union 

(EU) member states (Aristovnik, 2012), and of the higher education systems of the Organization 

for Economic Co-operation and Development (OECD) countries (Bayenet and Debande, 1999). 

In the same way, the current study aims to provide information on U.S. state-level academic R&D 

efficiency, a facet that has not yet been given intense research attention.   

 

Research and Development (R&D) 

In fields and institutions heavily involved in R&D activities, evaluating the outputs of R&D 

funding is crucial. As is the case for academic R&D, DEA has been used frequently to evaluate 

the efficiency of non-academic R&D institutions as well, on many levels and with various goals. 

DEA has been broadly proven to be a suitable method for evaluating R&D activities across 

multiple research subjects (Dilts et al., 2015; Lee et al., 2011; Li et al., 2014; Sengupta, 1999; 

Sharma and Thomas, 2008; Wang and Huang, 2007). National R&D investment efficiency and 

effectiveness have been evaluated using DEA (Jiménez-Sáez et al., 2011; Lee et al., 2009; Shi and 

Yang, 2008). As R&D is often funded wholly or in part by government agencies, the need to assess 

the efficient use of public funds has led to many DEA-based studies on government-subsidized 

R&D efficiency (Hsu and Hsueh, 2009; Lee and Lee, 2015; Park, 2015). Additionally, how the 

efficiencies of both parties are affected by the partnership between the public and private R&D 

sectors has been studied using DEA (Revilla et al., 2007).  DEA has also been used to create 

“guidelines” for R&D policy-makers by addressing the question: “Who leads productivity 

growth?” (Jiménez-Sáez et al., 2013). 

 DEA has been used in many regional- and provincial-level studies to determine R&D 

efficiency, such as those looking at regional investments (Zhong et al., 2011), the “transformation 

of knowledge-based economies” (Afzal and Lawrey, 2014), regional technical efficiency 

(Bergantino et al., 2013), and “production frontier performance” at the province level (Guan and 

Chen, 2010). R&D efficiency has been examined using DEA on the institutional level as well, in 

a study of “scope economies” at U.S. research universities (Chavas et al., 2012) and a study of the 

growth involved with scientific R&D institutes in China (Meng and Wang, 2014).  

 R&D efficiency has been evaluated on the industry level using DEA in such industries as 

pharmaceuticals (Hashimoto and Haneda, 2008), information technology (Sueyoshi and Goto, 

2013), and manufacturing (Dočekalová and Bočková, 2013). DEA has been used to evaluate the 

“returns to growth” for technology-based firms “facing hyper-competition” (Sahoo et al., 2011). 

DEA has similarly played a part in determining efficiencies in agricultural research on the country-
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level (Gomes et al., 2011; Hartwich and von Oppen, 2006), within a single region (Rehber and 

Tipi, 2006), and between firms (Oztop and Ucak, 2017). DEA has been used to determine the 

impact of barriers to entry on R&D efficiency (Cullmann et al., 2012) and to solve “target-setting 

difficulties” through “technology forecasting” (Anderson et al., 2012). DEA has likewise been 

applied to determine the efficiency of networks in “evaluating the R&D linking efficiency of 

innovation ecosystems” (Chen and Hung, 2016). 

As shown by these and other previous studies, DEA calculations are useful in identifying 

efficiencies that can affect the performance of an organization. These efficiency findings can reveal 

potential areas of improvement that decision-makers can use to reduce risk and better their 

organization. The current analysis uses DEA to determine state-level efficiency of academic R&D 

funding in providing desirable business outputs.  

 

METHODOLOGY 

 

Research Questions 

 Federal funding represents a large portion of total funding for R&D at government and 

academic institutions alike. Academic institutions that receive federal funding for R&D programs 

are often closely examined to determine their ability to produce desired outputs. In this study, we 

follow this vein of the investigation, with the additional emphasis on whether R&D at academic 

institutions on the state-level is efficient in creating the desired outputs.  

Research Question 1: Are states efficient in converting taxpayer dollars into business 

outputs? 

Next, we further look into the historical state-level academic R&D efficiency levels and their 

components to discover whether and how they have changed.  

Research Question 2: How has the productivity of academic R&D at the state level changed 

over time? 

Lastly, we delve into the environmental factors that contribute to R&D efficiencies and attempt to 

learn whether those states with efficient academic R&D share similar environmental 

characteristics.  

Research Question 3: What are the determinants of the efficiency of academic R&D? 

 

Efficiency Estimates 

 To determine whether states are efficient in converting taxpayer dollars into business 

outputs, we use an output-oriented DEA model to create efficiency estimates. We use the model 

below, as specified by Cooper et al. (2006): 

 

Max∅,𝜆 ∅, 

st         − ∅𝑦𝑖 + 𝑌𝜆 ≥ 0,  
𝑥𝑖 − 𝑋𝜆 ≥ 0, 
N1'λ=1 
𝜆 ≥ 𝜃, 
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To estimate the maximum efficiency of R&D, represented by Max∅,𝜆 ∅,, the output-

oriented, variable returns to scale (VRS) model is used where 1≤Ø≤∞ and Ø-1 indicate the 

proportional increase in outputs that could be achieved for the i-th firm with input quantities held 

constant. The output-oriented nature of the model tests to what level inputs y can be reduced 

without changing the quantity of outputs x.  Yλ and Xλ represent the efficiency reference set for 

the corresponding variables. The constraint, N1'λ=1, accounts for differences in whether or not 

firms are operating at an optimal scale. The projected point of each institution can then be 

benchmarked against others, where the DEA frontier is a convex combination rather than a linear 

one. Thus, the output-oriented model offers insight into the measurement of technical inefficiency 

as a proportional increase in output production for firms with a fixed quantity of resources. This 

provides for an accurate evaluation of relative efficiency that takes into account both technical and 

scale efficiencies.  

 

Productivity Change 

 To observe changes in state-level academic R&D productivity over time, we use an output-

based Malmquist Index and decompose the overall total factor productivity (TFP) results into 

categories such as scale efficiency and technical efficiency as in Orea (2002).  

𝑚𝑜(𝑦𝑡+1, 𝑥𝑡+1, 𝑦𝑡 , 𝑥𝑡) = [
𝑑𝑜

𝑡 (𝑥𝑡+1, 𝑦𝑡+1)

𝑑𝑜
𝑡 (𝑦𝑡 , 𝑥𝑡)

×
𝑑𝑜

𝑡+1(𝑥𝑡+1, 𝑦𝑡+1)

𝑑𝑜
𝑡+1(𝑦𝑡 , 𝑥𝑡)

]

1/2

 

 The output-based Malmquist TFP Index measure was used to determine the productivity 

change index when x and y, again, represent outputs and inputs, respectively. The model represents 

the productivity of the production point (𝑥𝑡+1, 𝑦𝑡+1) relative to the production point (𝑦𝑡 , 𝑥𝑡). A 

value greater than one (1) indicates positive TFP growth from period t to period t+1. The index is 

the geometric mean of two output-based Malmquist TFP indices. One of these indexes uses period 

t technology and the other period t+1 technology. This is determined based on the four linear 

programming problems that calculate each of the component distance functions; 𝑑𝑜
𝑡 (𝑥𝑡+1, 𝑦𝑡+1)

 
,

𝑑𝑜
𝑡 (𝑦𝑡 , 𝑥𝑡),  𝑑𝑜

𝑡+1(𝑥𝑡+1, 𝑦𝑡+1), 𝑑𝑜
𝑡+1(𝑦𝑡 , 𝑥𝑡). Each linear programming equation was calculated for 

each DMU for every time period measured. 

 

Tobit Model 

 To address any environmental factors that could affect the efficiency of a firm, we used 

Stata software to run a second stage Tobit regression. This captures the effects of influences from 

environmental factors such as R&D intensity, state-level GDP, or the state’s R&D-related startups. 

Unlike a traditional OLS regression model, the Tobit model, or censored regression model, 

estimates linear relationships between variables with left- or right- censoring in the dependent 

variable and is able to account for truncated data. It also served to identify and counteract any 

biases resulting from our first methodological step, the DEA model, which gives an efficiency 

score that is both left- and right-censored (bounded between zero (0) and one (1)). In this stage, 

the efficiency scores from the first analysis are regressed on the chosen environmental variables. 

The signs of the coefficients of these variables indicate the direction of the influences. The Tobit 

model then uses the regression’s estimated coefficients and their random errors to adjust efficiency 
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scores for censor-based bias. This helps to address both continuous and categorical variables 

affecting the outcomes of the efficiency tests.  

 

Data 

Data comes from the Association of University Technology Managers (AUTM) surveys, 

the National Science Foundation (NSF), the Bureau of Economic Analysis (BEA), and the 

National Center for Educational Statistics (NCES). 

The DEA model’s two input variables are (1) real university R&D (in 2009 dollars) and 

(2) total faculty and science and engineering (S&E) research staff (in number of persons). The 

seven output variables are (1) total patents, (2) total licenses, (3) total startups, (4) doctorate 

degrees, (5) master’s degrees, (6) S&E graduate students, and (7) S&E postdocs. Table 3 reports 

the correlations between the DEA model variables. Though the variables exhibit signs of strong 

correlations, the DEA model’s nonparametric specification alleviates estimation bias due to 

multicollinearity, unlike the bias seen in linear models (Akazili et al., 2008). 

 

Estimation Method 

This study used Multi-stage Data Envelopment Analysis (DEA), Malmquist Productivity 

Index, and Tobit Model to estimate (a) relative efficiency of each state; (b) changes in efficiency 

measures by state; (c) projected (target) output values to reach efficiency level; (d) peer state 

DMUs for Tennessee, as an example; (e) productivity change over the years studies; and (f) 

determinants of relative efficiency. 

This study utilized an output-oriented approach: given the input level, how much of an 

increase in outputs can be made to increase efficiency. 
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RESULTS 

Efficiency Results 

 

 

Table 4 provides definitions for the key terms used in the DEA output tables. For purposes 

of this paper, the relative efficiency score used is the variable returns to scale technical efficiency 

(TE-VRS). This category is shaded in Table 5, which shows the states ranked by TE-VRS score 

for the years 2006, 2009, 2011, and 2015. These years were chosen for the study to account for the 

impact of the 2007-2009 major recession, where the year 2006 represents “before,” the year 2009 

represents “during,” and the year 2011 represents “after.” The year 2015 is included as it was the 

last year the data were available. 

Table 5 provides annual efficiency scores of all states in the four years covered in this 

study. In 2006, as seen on the table, only 12 states in the U.S. were operating efficiently in terms 

of maximizing the academic outputs given the amount of R&D spending and academic 

employment (shown by the box around all TE-VRS that equal one (1)). As has been mentioned, 

technical efficiency that allows variable returns to scale (VRS) is the measure of pure efficiency. 

A score of one (1) is deemed efficient, and any score of less than one (1) is efficiency-deficient. 

The rankings indicate how a state compares to the rest in terms of pure efficiency. Interestingly, 

efficient states show constant or increasing returns to scale. The inefficient states (except Georgia 

and Wisconsin) show decreasing returns. For example, Tennessee (in bold) ranked 28th in terms 

of pure efficiency and shows decreasing returns to scale. 

The 2009 column of Table 5 shows that in that year 15 states were operating efficiently in 

terms of maximizing the academic outputs given the amount of R&D spending and academic 

employment. Though the number of the efficient states increased from 2006, more efficient states 

showed decreasing returns to scale in 2009 than in 2006. Given the efficiency scores shown in 

Table 5, we can see that states often maintain their place in the ranking over time, usually only 

moving a few places up or down. For example, Tennessee ranked 28th in pure efficiency in 2006 

and moved to 31st in 2009. South Carolina is an example of a large decrease in efficiency, moving 

Output-oriented model
This model is used to test whether a decision-making unit 

(DMU) can increase its output while keeping the input fixed

Constant Returns to Scale (CRS) Changes in inputs and outputs are proportional

Variable Returns to Scale (VRS)
Production technology may be increasing, constant, or 

decreasing in terms of returns to scale

Technical Efficiency (TE)-Constant Returns to Scale (CRS)
Ability of a DMU to get the maximum output given the input 

levels under the VRS technology

Technical Efficiency (TE)-Variable Returns to Scale (CRS)
Ability of a DMU to get the maximum output given the input 

levels under the CRS technology

Scale Efficiency (TE-CRS/TE-VRS)
The component of technical efficiency associated with the 

scale of operation

Table 4: Key Terms
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from 25th in 2006 to 38th in 2009. Studying the efficiency scores for a longer time frame would 

shed more light onto the patterns of change in state R&D efficiency.  

In 2011, 14 states were operating efficiently in terms of maximizing the academic outputs 

given the amount of R&D spending and academic employment, though the number of efficient 

states with increasing and constant returns to scale returned to what it had been in 2006. More non-

efficient states showed increasing returns to scale as well. The increasing returns to scale showed 

that inefficient states seemed to be striving toward efficiency. Again, overall states moved only 

State

TE 

(CRS)

TE 

(VRS)

Rank 

(VRS) SE

Return 

to 

Scale State

TE 

(CRS)

TE 

(VRS)

Rank 

(VRS) SE

Return 

to Scale State

TE 

(CRS)

TE 

(VRS)

Rank 

(VRS) SE

Return 

to Scale State

TE 

(CRS)

TE 

(VRS)

Rank 

(VRS) SE

Return 

to Scale

CA 1.000 1.000 1 1.000 -  AZ 0.220 1.000 1 0.220 drs  CA 1.000 1.000 1 1.000 -  CA 1.000 1.000 1 1.000 -

FL 1.000 1.000 1 1.000 - CA 1.000 1.000 1 1.000 - CO 0.880 1.000 1 0.880 irs CO 0.964 1.000 1 0.964 irs

IL 1.000 1.000 1 1.000 - CO 0.936 1.000 1 0.936 irs FL 1.000 1.000 1 1.000 - CT 0.603 1.000 1 0.603 irs

MA 1.000 1.000 1 1.000 - FL 1.000 1.000 1 1.000 - GA 0.989 1.000 1 0.989 irs FL 1.000 1.000 1 1.000 -

MI 1.000 1.000 1 1.000 - IL 1.000 1.000 1 1.000 - IL 1.000 1.000 1 1.000 - IL 1.000 1.000 1 1.000 -

NC 0.834 1.000 1 0.834 irs IN 1.000 1.000 1 1.000 - MA 1.000 1.000 1 1.000 - IN 1.000 1.000 1 1.000 -

NE 0.355 1.000 1 0.355 irs MA 1.000 1.000 1 1.000 - MO 1.000 1.000 1 1.000 - MA 1.000 1.000 1 1.000 -

NJ 1.000 1.000 1 1.000 - MD 0.756 1.000 1 0.756 drs NJ 1.000 1.000 1 1.000 - MI 1.000 1.000 1 1.000 -

NY 1.000 1.000 1 1.000 - MI 1.000 1.000 1 1.000 - NV 0.829 1.000 1 0.829 irs NJ 1.000 1.000 1 1.000 -

OH 1.000 1.000 1 1.000 - MO 1.000 1.000 1 1.000 - NY 1.000 1.000 1 1.000 - NY 0.934 1.000 1 0.934 drs

VA 1.000 1.000 1 1.000 - NY 0.901 1.000 1 0.901 drs PA 1.000 1.000 1 1.000 - OH 1.000 1.000 1 1.000 -

WA 1.000 1.000 1 1.000 - OH 1.000 1.000 1 1.000 - TX 0.886 1.000 1 0.886 drs PA 1.000 1.000 1 1.000 -

TX 0.905 0.959 13 0.943 drs TX 0.786 1.000 1 0.786 drs VA 1.000 1.000 1 1.000 - TX 0.827 1.000 1 0.827 drs

PA 0.833 0.955 14 0.872 drs VA 1.000 1.000 1 1.000 - WA 1.000 1.000 1 1.000 - VA 1.000 1.000 1 1.000 -

GA 0.726 0.877 15 0.828 irs WA 1.000 1.000 1 1.000 - IN 0.827 0.972 15 0.850 irs WA 1.000 1.000 1 1.000 -

WI 0.765 0.870 16 0.879 irs PA 0.796 0.977 16 0.814 drs AZ 0.872 0.904 16 0.965 irs GA 0.873 0.956 16 0.913 irs

AZ 0.015 0.465 17 0.032 drs GA 0.830 0.960 17 0.865 irs MI 0.884 0.887 17 0.996 irs NC 0.706 0.758 17 0.931 drs

UT 0.035 0.419 18 0.083 drs NC 0.723 0.925 18 0.781 drs OH 0.834 0.844 18 0.988 drs MN 0.075 0.717 18 0.105 drs

MD 0.367 0.418 19 0.876 drs WI 0.638 0.778 19 0.819 irs NC 0.772 0.779 19 0.991 drs WI 0.633 0.703 19 0.900 irs

IA 0.031 0.389 20 0.079 drs UT 0.022 0.393 21 0.055 drs WI 0.673 0.760 20 0.886 irs AZ 0.145 0.579 20 0.250 drs

MN 0.023 0.346 21 0.068 drs MN 0.016 0.328 22 0.049 drs MD 0.562 0.563 21 0.998 irs OR 0.133 0.528 21 0.252 drs

IN 0.020 0.298 22 0.067 drs NJ 0.016 0.314 23 0.050 drs MN 0.082 0.359 22 0.229 drs MD 0.463 0.496 22 0.934 drs

MO 0.011 0.292 23 0.036 drs KY 0.018 0.289 24 0.062 drs UT 0.065 0.313 23 0.209 drs MO 0.068 0.372 23 0.182 drs

CO 0.028 0.266 24 0.106 drs OR 0.014 0.253 25 0.054 drs OR 0.077 0.309 24 0.250 drs TN 0.356 0.362 24 0.984 drs

SC 0.050 0.260 25 0.192 drs IA 0.009 0.235 26 0.038 drs AL 0.143 0.252 25 0.569 drs NH 0.032 0.301 25 0.106 drs

CT 0.062 0.251 26 0.246 drs VT 0.090 0.229 27 0.392 drs CT 0.118 0.243 26 0.487 drs UT 0.086 0.287 26 0.298 drs

OR 0.039 0.251 26 0.156 drs DC 0.007 0.214 28 0.034 drs DC 0.125 0.237 27 0.528 drs IA 0.021 0.265 27 0.081 drs

TN 0.053 0.246 28 0.217 drs ND 0.007 0.214 28 0.034 drs IA 0.120 0.213 28 0.561 drs ME 0.057 0.227 28 0.253 drs

DC 0.014 0.232 29 0.060 drs NV 0.096 0.212 30 0.455 drs ND 0.046 0.206 29 0.224 drs DC 0.028 0.185 29 0.150 drs

ID 0.044 0.188 30 0.234 drs TN 0.005 0.206 31 0.023 drs TN 0.049 0.183 30 0.266 drs KY 0.035 0.174 30 0.204 drs

AL 0.019 0.161 31 0.116 drs AL 0.004 0.172 32 0.024 drs KS 0.169 0.174 31 0.973 drs AL 0.025 0.173 31 0.146 drs

NM 0.045 0.158 32 0.286 drs CT 0.010 0.154 33 0.068 drs LA 0.032 0.139 32 0.234 drs ND 0.022 0.161 32 0.134 drs

LA 0.008 0.148 33 0.052 drs AR 0.006 0.136 34 0.041 drs VT 0.127 0.129 33 0.986 irs WV 0.071 0.158 33 0.448 drs

ND 0.024 0.127 34 0.186 drs LA 0.003 0.135 35 0.025 drs ID 0.107 0.122 34 0.880 drs LA 0.019 0.142 34 0.136 drs

KY 0.010 0.126 35 0.082 drs NM 0.008 0.114 36 0.067 drs KY 0.022 0.121 35 0.180 drs NE 0.039 0.131 35 0.297 drs

KS 0.007 0.107 36 0.065 drs KS 0.009 0.111 37 0.084 drs ME 0.038 0.113 36 0.339 drs KS 0.020 0.120 36 0.163 drs

OK 0.005 0.106 37 0.049 drs OK 0.003 0.098 38 0.029 drs OK 0.017 0.096 37 0.180 drs ID 0.034 0.108 37 0.315 drs

HI 0.019 0.085 38 0.225 drs SC 0.004 0.098 38 0.045 drs SC 0.022 0.095 38 0.233 drs SC 0.020 0.106 38 0.186 drs

MT 0.005 0.077 39 0.064 drs NE 0.003 0.083 40 0.040 drs MS 0.050 0.089 39 0.555 drs NM 0.018 0.095 39 0.193 drs

MS 0.005 0.068 40 0.068 drs MS 0.002 0.068 41 0.030 drs AR 0.081 0.087 40 0.939 drs OK 0.014 0.092 40 0.150 drs

DE 0.065 0.066 41 0.997 - ME 0.004 0.067 42 0.054 drs NE 0.019 0.086 41 0.225 drs AR 0.014 0.080 41 0.169 drs

NH 0.010 0.063 42 0.153 drs WV 0.003 0.065 43 0.052 drs WV 0.013 0.084 42 0.149 drs MS 0.014 0.078 42 0.176 drs

AR 0.003 0.055 43 0.049 drs MT 0.002 0.055 44 0.036 drs NM 0.015 0.072 43 0.206 drs RI 0.045 0.076 43 0.593 drs

WV 0.003 0.050 44 0.067 drs NH 0.008 0.050 45 0.166 drs MT 0.029 0.060 44 0.474 drs NV 0.019 0.066 44 0.287 drs

RI 0.002 0.043 45 0.039 drs ID 0.007 0.046 46 0.151 drs RI 0.024 0.051 45 0.475 drs DE 0.017 0.063 45 0.277 drs

NV 0.004 0.040 46 0.094 drs RI 0.005 0.046 46 0.105 drs NH 0.017 0.050 46 0.346 drs MT 0.009 0.046 46 0.200 drs

VT 0.007 0.038 47 0.180 drs HI 0.004 0.045 48 0.089 drs HI 0.028 0.046 47 0.601 drs VT 0.012 0.038 47 0.316 drs

ME 0.003 0.026 48 0.129 drs SD 0.003 0.045 48 0.062 drs DE 0.021 0.039 48 0.555 drs HI 0.008 0.035 48 0.237 drs

SD 0.012 0.024 49 0.481 drs DE 0.002 0.036 50 0.056 drs SD 0.006 0.023 49 0.284 drs SD 0.004 0.027 49 0.145 drs

AK 0.001 0.014 50 0.061 drs AK 0.001 0.016 51 0.057 drs AK 0.004 0.018 50 0.217 drs AK 0.004 0.019 50 0.233 drs

Average

0.309 0.431 0.412 0.340 0.463 0.388 0.414 0.474 0.652 0.369 0.474 0.513

Note:   

For returns to scale:  irs= increasing returns to scale

drs= decreasing returns to scale

- = constant returns to scale

TE (CRS) stands for technical efficiency with constant returns to scale, TE (VRS) stannds for technical efficiency with variable returns to scale, and SE stands for scale efficiency

Table 5: Annual Efficiency Scores, 2006-2015
2006 2009 2011 2015
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slightly in terms of pure efficiency ranking. For example, Tennessee ranked 30th for pure efficiency 

in 2011 (28th in 2006 and 31st in 2009). 

In 2015, 15 states were operating efficiently in terms of maximizing the academic outputs 

given the amount of R&D spending and academic employment, and fewer of the non-efficient 

states had increasing returns to scale compared to 2011. Tennessee ranked 24th in terms of pure 

efficiency. 

 The DEA state-level R&D efficiency scores for the four years presented above show that 

states which comprise the efficiency frontier have generally remained efficient throughout the 

years of this study. This result is not surprising. It makes sense that it is more likely for an efficient 

state to remain efficient over a few years’ time than for an inefficient state to become efficient in 

the same amount of time.  

 

Tennessee and Neighboring States as a Case Study 

Examining the historical scores of geographical neighbors can be another way for states to 

benchmark and measure their R&D efficiency as characteristics of universities show geographical 

clustering. In this case study, we used Tennessee and its neighboring states as an example. 

Tennessee’s scores and its peers’ scores are detailed in Table 6. Among Tennessee’s neighboring 

states, Florida, North Carolina, Virginia, and Georgia have scored consistently either on or near 

the efficiency frontier in the years of the study, while Tennessee’s efficiency scores have been 

consistently below the 50-state average. This suggests that these neighboring states’ universities 

have some sort of institutional advantage over the universities in Tennessee, whether this be the 

number of R&D-focused institutions or the intensity of the R&D focus in those institutions. By 

this comparison, one can see that Tennessee ranks in the middle of this Southeast state cluster. 

However, geography might not be the best criterion for comparison, as the ranks and efficiency 

scores fail to delve into the reasons for state efficiency. To find more appropriate comparisons, we 

return to the DEA model. 

The DEA model itself formulates a unique set of efficient “peer” states for each inefficient 

state. These peer states provide information about options to achieve efficiency for the inefficient 

TE-CRS TE-VRS TE-CRS TE-VRS TE-CRS TE-VRS TE-CRS TE-VRS

Florida 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Virginia 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

North Carolina 0.834 1.000 0.723 0.925 0.772 0.779 0.706 0.758

Georgia 0.726 0.877 0.830 0.960 0.989 1.000 0.873 0.956

South Carolina 0.050 0.260 0.004 0.098 0.022 0.095 0.020 0.106

Tennessee 0.053 0.246 0.005 0.206 0.049 0.183 0.356 0.362

Alabama 0.019 0.161 0.004 0.172 0.143 0.252 0.025 0.173

Kentucky 0.010 0.126 0.018 0.289 0.022 0.121 0.035 0.174

Mississippi 0.005 0.068 0.002 0.068 0.050 0.089 0.014 0.078

Average 0.309 0.431 0.340 0.463 0.414 0.474 0.369 0.474

Note: States are sorted from highest TE-VRS in 2006 to lowest. TE-CRS is Technical Efficiency-Constant Returns to Scale; TE-VRS 

is Technical Efficiency-Variable Returns to Scale.

Table 6: Academic R&D Efficiency: Tennessee vs. Its neighbors

2006 2009 2011 2015
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states. The DEA model accomplishes this through “slacks.” The slacks are model-determined 

variables that, when changed, could result in the state becoming efficient. Using the slack 

information in combination with the input-output ratios for each state, the model matches an 

inefficient state with peers, those that have a similar input-output structure.  

The DEA model creates slacks to show what variables a state could change to become 

efficient. For Tennessee to be efficient given the level of academic R&D input and staff for 2015, 

it may be able to increase S&E postdocs, S&E graduate students, and patents. Table 7 shows the 

original value and the slacks for Tennessee’s outputs. For example, in 2015, the state had large 

output slacks in patents, meaning that these are the outputs that are leading to Tennessee’s 

inefficiency.  

 

Peers are determined by the DEA model as the efficient states that have input-output ratios 

which best fit a target state’s original and slack values. Based on the 2015 efficiency assessment, 

Pennsylvania and California are Tennessee’s aspirational peers in terms of the input-output ratios. 

In Table 8, notice that the slacks for each of these efficient peer states are zero (0), meaning the 

model can find no way for them to improve. The DEA model assumes that there exist more than 

one path to attain efficiency; instead, the model creates a “frontier” of efficiency possibilities.  

 

This efficiency frontier is similar to a production possibilities frontier. A production 

frontier shows the combination of production outputs that are possible for a firm given inputs and 

costs, while the output-oriented efficiency frontier shows the different combinations of outputs 
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that can be considered efficient. It follows, therefore, that one state could have more patents and 

fewer startups than another efficient state while still being on the “frontier” of efficiency. 

 

Productivity Change 

 Following the Malmquist Index methodology outlined previously, we created two tables 

breaking down the efficiency (or productivity) change over time. The first table (Table 9) shows 

averages of productivity changes between the time periods used in the present study as well as the 

separated factors of the total changes. The second table (Table 10) shows state averages for 

productivity changes over the entire span from 2006 to 2015. 

Overall, since 2006, states experienced the greatest change in efficiency in the period 2009-

2011, as shown in Table 9. This efficiency change was driven by a large increase in scale 

efficiency. Increasing returns to scale was highlighted previously in the discussion of the DEA 

output for 2011. Additionally, pure technical efficiency was on the increase in all three periods. 

Technical and scale efficiency seem to be opposite in terms of increasing and decreasing 

productivity, meaning that when technical efficiency increases in productivity, scale efficiency 

decreases in productivity.  

Efficiency Change

Technical Efficiency 

Change 

Pure Technical 

Efficiency Change     

Scale Efficiency 

Change      

Total Factor 

Productivity Change     

Year (Effch) (Techch) (Pech) (Sech) (Tfpch)

2006/2009 0.789 1.379 1.073 0.735 1.087

2009/2011 3.536 0.293 1.045 3.385 1.036

2011/2015 0.706 1.523 1.028 0.686 1.075

Average 1.253 0.850 1.049 1.195 1.066

Table 9: Malmquist Index Summary of Annual Means

Note: Efficiency change larger than 1 (e>1) = increasing productivity, Efficiency change less than 1 (e<1) = decreasing productivity, 

Efficiency change equal to 1 (e=1) = no change in productivity
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Examining changes in efficiency provides a case for encouraging productivity growth even 

in states that are not efficient. These results provide a clearer insight into states’ efficient use of 

R&D funding. For example, in the DEA results above, Tennessee’s ranking varies from 24th to 

31st in the nation in terms of R&D efficiency. However, by the Malmquist Index results shown in 

Table 9, Tennessee ranks 6th among U.S. states in terms of productivity gains between 2006 and 

2015.   In Table 10, shaded cells represent efficiency scores of one (1) or above. Therefore, while 

Tennessee is average among the states in terms of institutional R&D efficiency, its productivity 

changes show the state is indeed above average among the states in improving efficiency.  

When comparing Tennessee to its neighboring efficient states, one can see that Florida, 

Georgia, North Carolina, and Virginia all rank at or below 20 in terms of increases in productivity 

change. In general, for the information presented in Table 10, states that are efficient lack large 

increases in productivity when compared to the nation. However, the opposite does not hold true: 

inefficient states do not consistently show large increases in productivity over time. Mississippi, 

South Carolina, and Kentucky—Tennessee’s non-efficient neighboring states—all rank at or 

below 18 in terms of productivity. In the Tennessee example, one can see that, though inefficient, 

Tennessee outranks its neighbors, both the efficient and non-efficient states, in terms of 

productivity changes. These comparisons imply that Tennessee is making strides toward academic 

R&D efficiency, though it remains in the category of non-efficient.  

 

 

 

 

State

Efficiency 

Change 

(Effch)

Technical 

Efficiency 

Change 

(Techch)

Pure Technical 

Efficiency Change      

(Pech)

Scale 

Efficiency 

Change 

(Sech)

Total Factor 

Productivity 

Change 

(Tfpch)

Tfpch 

Rank State

Efficiency 

Change 

(Effch)

Technical 

Efficiency 

Change 

(Techch)

Pure Technical 

Efficiency Change      

(Pech)

Scale Efficiency 

Change    (Sech)

Total Factor 

Productivity 

Change (Tfpch)

Tfpch 

Rank

AK 1.732 0.653 1.105 1.568 1.131 19 MS 1.437 0.726 1.047 1.372 1.043 25

AL 1.105 0.696 1.023 1.081 0.769 43 MT 1.226 0.981 0.841 1.458 1.203 15

AR 1.711 0.756 1.134 1.509 1.294 11 NC 0.946 0.967 0.912 1.038 0.915 38

AZ 2.140 0.658 1.075 1.990 1.409 9 ND 0.972 0.965 1.084 0.897 0.939 35

CA 1.000 1.058 1.000 1.000 1.058 22 NE 0.479 0.817 0.508 0.942 0.391 50

CO 3.240 1.031 1.554 2.085 3.339 2 NH 1.494 0.775 1.686 0.886 1.157 17

CT 2.136 0.674 1.586 1.347 1.440 8 NJ 1.000 0.912 1.000 1.000 0.912 39

DC 1.261 0.695 0.927 1.360 0.876 40 NM 0.740 0.867 0.843 0.878 0.642 45

DE 0.643 0.719 0.985 0.653 0.462 49 NV 1.723 0.687 1.187 1.451 1.183 16

FL 1.000 1.051 1.000 1.000 1.051 23 NY 0.977 0.949 1.000 0.977 0.927 37

GA 1.064 1.056 1.029 1.033 1.123 20 OH 1.000 1.069 1.000 1.000 1.069 21

HI 0.759 0.819 0.746 1.017 0.621 47 OK 1.388 0.733 0.955 1.454 1.018 26

IA 0.886 0.918 0.880 1.007 0.813 42 OR 1.502 0.863 1.281 1.173 1.296 10

ID 0.918 0.694 0.831 1.105 0.637 46 PA 1.063 1.181 1.015 1.047 1.256 12

IL 1.000 0.999 1.000 1.000 0.999 27 RI 3.010 0.669 1.211 2.485 2.014 4

IN 3.695 1.044 1.498 2.467 3.859 1 SC 0.734 0.918 0.742 0.989 0.674 44

KS 1.413 0.691 1.040 1.359 0.977 32 SD 0.695 0.708 1.037 0.670 0.492 48

KY 1.509 0.754 1.113 1.355 1.137 18 TN 1.884 0.906 1.138 1.656 1.707 6

LA 1.362 0.730 0.986 1.381 0.994 28 TX 0.971 1.015 1.014 0.957 0.985 31

MA 1.000 0.987 1.000 1.000 0.987 30 UT 1.350 0.908 0.882 1.531 1.226 13

MD 1.081 0.862 1.058 1.022 0.932 36 VA 1.000 0.970 1.000 1.000 0.970 33

ME 2.578 0.840 2.060 1.251 2.165 3 VT 1.204 0.698 0.999 1.205 0.841 41

MI 1.000 0.994 1.000 1.000 0.994 28 WA 1.000 1.051 1.000 1.000 1.051 23

MN 1.477 0.826 1.276 1.158 1.220 14 WI 0.939 1.010 0.931 1.008 0.948 34

MO 1.860 0.880 1.084 1.715 1.637 7 WV 2.761 0.685 1.468 1.881 1.892 5

Average 1.253 0.850 1.049 1.195 1.066

 Table 10: Malmquist Productivty Index: Summary of State Averages (2006-2015)

Note: Efficiency change larger than 1 (e>1) = increasing productivity, Efficiency change less than 1 (e<1) = decreasing productivity, Efficiency change equal to 1 (e=1) = no change in 

productivity

Global Journal of Accounting and Finance Volume 3, Number 1, 2019

40



Determinants of Efficiency 

To understand the determinants of the efficiency scores of the states, we used a Tobit 

random effect panel model for the years 2006, 2009, 2011, and 2015. The dependent variable is 

the relative efficiency value extracted from the DEA analysis above. The model is both right- and 

left-censored, as dependent variable values are bounded between zero (0) and one (1). At least four 

Tobit model variations were tested. Dependent and independent variables are listed in Table 11. 

We chose independent variables for determining efficiency through two assumptions: one 

is that efficiency is determined by the existing institutional and state environment and the other is 

that the type or distribution characteristics of the R&D funding can influence efficiency. The 

environmental variables are the number of Faculty and S&E Non-Faculty Research Staff, number 

of R&D-related startup companies, and State Gross Domestic Product per capita. We expect these 

variables to be high when efficiency is high, as the higher levels of these variables imply that R&D 

funding would be high and that business outputs would be more efficiently produced.  

For funding, we defined four characteristics: concentration, diversity, institutional 

diversity, and intensity. Concentration measures a state’s ratio of federal funding compared to the 

national federal funding ratio. Diversity measures R&D funding source diversity (e.g., federal, 

state, and institutional sources). Institutional diversity measures the number of institutions that 

receive R&D funding in a state. Intensity measures a state’s academic R&D funding as a share of 

the state GDP. We expected concentration and intensity to correlate positively with efficiency. 

Funding diversity was expected to correlate negatively with efficiency, as different sources of 

funding (government or industry) might seek different outcomes for their funds and these 

differences could cause inefficiency when, for example, multiple entities are funding the same 

program or department. We also expected institutional diversity to correlate negatively with 

efficiency according to the assumption that a single institution receiving more funds would likely 

Efficiency State DEA efficiency score, 0 ≤ efficiency ≤ 1

FSENFRS Number of Faculty and S&E Non-Faculty Research Staff

STARTUPS Number of R&D-related start-up companies

GDPPC State Gross Domestic Product per capita

RDINTEN R&D Intensity measured as All Academic R&D/Total GDP

RDDIV
R&D Diversity, measured by sources of academic R&D (industry, federal, state, and federal research 

institute)

CONIDIV Interaction term between concentration and diversity

RDINSDIV R&D Institutional diversity

RDINSD2 R&D Intensity, squared

RDCONC2 R&D State Concentration, squared

RDCONC R&D State Concentration

RDDIV2 R&D Diversity, squared

Table 11: Tobit Model Variables Used

Dependent

Independent
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produce a greater number of outputs than multiple institutions receiving much lesser amounts of 

funding.   

 The independent variables include the number of faculty and science and engineering non-

faculty research staff per million dollars of R&D funding (FSENFRS), the number of R&D-related 

startup companies per million dollars of R&D funding (Startups), and state gross domestic product 

per capita (GDPPC). The other independent variables, described below, have to do with measures 

and indices of intensity, diversity, and concentration of R&D funding. 

 R&D intensity is measured as a state’s total academic R&D funding normalized by the 

state’s GDP (RDINTEN). Diversity has two meanings and measures in this model. The first is 

R&D source funding diversity, which measures how many different sources contribute to a state’s 

R&D funding, such as federal or institutional sources (RDDIV). This funding source diversity is 

set up as a diversity index, as described by Arik and Livingston (2014): 

 

𝑅𝐷𝐷𝐼𝑉 = 1 −  ∑𝑆𝑢
2, 

 

where RDDIV represents the sum of state-level funding diversity, and S(u) represents each 

source’s fraction of a university’s R&D funding. By this equation, if a university has a single 

source of funding—source gives 1.0 (or 100 percent) of funding—its score will be zero (0), so 

scores closer to zero (0) imply low diversity and scores closer to one (1) imply high diversity. 

 The second diversity variable measures the institutional diversity of R&D funding in a state 

(RDINSDIV). This shows the share of the total state R&D funding received by a university or 

institution. Barring notation, the formula is the same as the diversity formula above: 

 

𝑅𝐷𝐼𝑁𝑆𝐷𝐼𝑉 = 1 −  ∑𝐹𝑢
2, 

 

where RDINSDIV is the state-level sum of institutional shares of a state’s R&D funding, and F(u) 

represents the fraction of funding received by a given university. If a single university receives all 

R&D funding in a state—1.0 (or 100 percent) of funding—the state’s score will be zero (0). Scores 

close to zero (0) indicate low diversity, while scores close to one (1) indicate high diversity. 

 R&D concentration (RDCONC) is measured using a location quotient, where the relative 

concentration of academic R&D funding in a state is compared with the relative academic R&D 

funding in the entire United States.  

 

𝑅𝐷𝐶𝑂𝑁𝐶 =  

𝐹𝐹𝑅𝐷𝑆𝑇𝐴𝑇𝐸
𝑇𝑅𝐷𝑆𝑇𝐴𝑇𝐸

⁄

𝐹𝐹𝑅𝐷𝑈𝑆
𝑇𝑅𝐷𝑈𝑆

⁄
, 

 

where FFRDSTATE is the federally-funded R&D in a state, TRDSTATE is the total R&D in a state, 

FFRDUS is the total federally-funding R&D in the U.S., and TRDUS is the total R&D funding in 

the U.S. If RDCONC is less than one (1), the state’s ratio is less than the national ratio. If 

RDCONC is greater than one (1), the state’s ratio is greater than the national ratio and that the 

state receives a proportionally greater amount of federal funding than do other states. The closer 

RDCONC is to one (1), the closer the state is to the national ratio of federal to total R&D funding. 
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This concentration measure of federal funding is important since, after the Bayh-Dole Act of 1980, 

universities that receive federal funding can take out licenses and patents on the research 

discoveries they make (Arik and Ndrianasy, 2018). 

 The final independent variable is an interaction term between R&D concentration and 

funding source diversity. The equation is simply: 

 

𝐶𝑂𝑁𝐼𝐷𝐼𝑉 = 𝑅𝐷𝐷𝐼𝑉 ∗ 𝑅𝐷𝐶𝑂𝑁𝐶, 
 

where CONIDIV is the interaction term, RDDIV is source diversity, and RDCONC is a state’s 

R&D concentration relative to the U.S.  

We tested four models, and model results are presented in Table 12. Results significant at 

the 99 percent significance level are outlined in bold. 

 

(1) (2) (3) (4)

0.6840** 0.2530 -0.4210 -0.5014

0.2694 0.2287 0.3649 0.3246

-0.0137 -0.0096 -0.0074 -0.0065

0.0078 0.0065 0.0064 0.0061

4.6189*** 4.4711** 3.5707 3.7123***

2.5007 2.2655 2.2176 2.1983

-2.7636 -7.5909** -5.8188*** -5.6658***

3.4170 3.1676 3.1359 3.1250

0.000

0.000

0.0770 0.2248 3.7798** 3.8853*

0.3197 0.2839 1.2408 1.2232

40.5011* 46.9816* 46.8982*

9.2187 9.1633 9.1465

26.3367* -13.6122 -19.9494*** -19.4538***

6.5468 11.1604 10.9909 10.933

-1.2488*** -0.8231 -0.821 -0.7785

0.6973 0.5748 0.5483 0.541

-4.5334** -4.6464**

1.5262 1.5102

1.0352*** 1.0032*** 1.0115*** 0.9643***

0.6268 0.5446 0.5238 0.5143

-67.5186 -81.4838* -81.3011* -82.7077*

87.1010 16.8192 16.3791 16.1359

Sigma u 0.2274 0.1488 0.1315 0.1311

Sigma e 0.2236 0.2272 0.2247 0.2251

Rho 0.5083 0.3002 0.255 0.2535

0.6856 0.8048 0.8147 0.8139

r
2 0.47 0.6477 0.6637 0.6624

FSENFRS

Constant

STARTUPS

GDPPC

RDCONC

RDINTEN

RDDIV

Table 12: Tobit Random Effect Panel Data Assessment: Determinants of Relative Efficiency

Efficiency

*,**,*** indicate significance at 99%, 95%, and 90% levels, respectively

Predicted*Observed Efficiency

Note: Robust standard errors are reported in bold and italics.                                

RDINSDIV

RDINSD2

CONIDIV

RDDIV2

RDCONC2
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Sigma u and sigma e represent the panel-level and overall variance of the model, 

respectively. All four models had sigma u and sigma e variances with p-values at the 99 percent 

significance level. Additionally, the coefficients’ signs remain the same across all models, with 

the exception of CONIDIV, which was positive in the first model and subsequently negative for 

the last three models. 

 Model 1 has a correlation of 0.6856 between its predicted values and the observed values. 

The only 0.05-level significant determinant of efficiency is CONIDIV, which is the interaction 

term between the concentration ratio of R&D funding and the diversity of the source of R&D 

funding. The relationship between efficiency and CONIDIV is positive. FSENFRS, RDINTEN, 

RDINSDIV, and RDCONC2 all correlate negatively with efficiency. Startups, RDDIV, and 

RDINSD2 positively correlate with efficiency. This implies that faculty and staff, R&D intensity, 

institutional diversity, or squared concentration correlate with a decrease in efficiency. Increases 

in startups, R&D diversity or squared institutional diversity would correlate with an increase in 

efficiency. 

 Model 2 adds a non-squared R&D concentration term (RDCONC). This addition increases 

the correlation to 0.8048, with the added term significant at the 0.05 level. Startups, RDINTEN, 

and RDCONC2 also are significant at the 0.05 level. Startups positively correlate with efficiency, 

meaning that the more startups there are in a state, the more efficiently the state is able to use 

university R&D to produce business outputs. RDINTEN, measuring R&D intensity, negatively 

correlates with efficiency. This means that as the ratio of academic R&D to total (state) GDP goes 

up, efficiency decreases. RDCONC correlates positively with efficiency, but RDCONC2 

correlates negatively with it. 

 After the concentration variable is added, the models’ correlation between the predicted 

and the observed values hover around 0.81. In Model 3 there is added a squared version of the 

R&D diversity score (RDDIV2) and a variable for GDP per capita (GDPPC). At 0.8147, this model 

has, of all the models tested, predicted values that correlate best with the observed values. In this 

model, RDDIV, RDDIV2, RDCONC, and RDCONC2 are all significant at the 0.05 level or lower. 

RDINSD2 is significant at the 0.053 level, and thus will be counted as significant. As seen in 

Model 2, the concentration variable follows the same correlation pattern, where RDCONC is 

positively correlated, and RDCONC2 is negatively correlated. The normal and squared terms for 

R&D funding diversity follow the same pattern. The R&D intensity and its square also have 

opposite signs, where RDINTEN is negatively correlated, and RDINSD2 is positively correlated. 

This means that in cases of R&D intensity, while intensity negatively correlates with efficiency, 

there might be a point that increasing intensity does lead to higher levels of efficiency. However, 

RDINTEN is not significant at the 0.05 level, and thus there can be no strong conclusion drawn. 

 Model 4 has the next best correlation of 0.8139. Model 4 is the same as Model 3 except for 

the removal of the variable GDPPC. Without the insignificant variable GDPPC, IDINSD2 is not 

significant, but the startups variable becomes significant at the 0.10 level. Additionally, RDDIV 

becomes significant at the 0.01 level. The other significant variables have the same signs and 

remain as significant as in Model 3. 

 The addition of a squared term for many of the significant variables suggests levels of the 

variables that optimize the efficiency score for R&D funding. This is especially true because, for 

these variables with significant squared terms, the squared term correlates with efficiency in the 
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opposite direction from the non-squared term (e.g., RDCONC correlates positively, and 

RDCONC2 correlates negatively). This implies that the concentration of R&D funding has a 

positive effect on efficiency. However, as the concentration increases the effect of concentration 

on efficiency is lessened.  

Across the models tested, those variables we identified as “environmental” variables were 

not significant or barely significant in one or two models. In the model with the best R-square, 

none of the environmental variables were consistently significant. This suggests that 

environmental effects could be captured by other unknown variables. 

 

STUDY IMPLICATIONS, LIMITATIONS AND FUTURE RESEARCH 

 

This analysis of academic R&D funding efficiency suggests that only about 30 percent of 

states may be considered relatively efficient. When analyzed historically, the same states 

consistently operated at the efficiency frontier. 

 

Study Implications 

Since a significant portion of academic R&D is financed by the taxpayers, a state by state 

efficiency analysis may provide better insights for policymakers to make responsible choices. 

Efficiency scores alone, however, do not provide the full picture, as many efficient states remain 

efficient over time. A more comprehensive understanding comes from examining total factor 

productivity as it relates to R&D funding efficiency and its changes on the state level. Together,  

these provide state policymakers with the basis to make a case for increases in their states’ portion 

of federal funding or, in some instances, to make the case to an industry that the investment in a 

state’s universities will lead to increased business outputs in that state. 

The key determinants of relative efficiency are diversity, intensity, and concentration 

variables. These variables all relate to the type and distribution of R&D funding; none of the 

environmental variables we tested proved consistently significant. This implies that those who 

provide the funding have an impact on the efficiency of the funding, as funding diversity and 

funding concentration are directly under the control of the funding decision-makers. R&D intensity 

and R&D institutional diversity are, similarly, variables over which the DMU (the state) has little 

control. This means that states should be doing all they can to make their universities attractive to 

funding entities, namely the federal government and private industry. 

 

Study Limitations and Improvements 

One of the limitations of the current study was in the outputs of the DEA model. Though 

empirically supported by a previous study (Arik and Ndrianasy, 2018), the business outputs used 

in creating the efficiency scores were hardly all-inclusive. There may be different factors that 

support local economies, but that were not captured in this study. Furthermore, economies often 

improve due to factors that are difficult to measure. Thus academic R&D could have effects on 

local economies that have not yet been measured. 

One of the major potential improvements to the study is covering a longer time frame. This 

would shed more light on the efficiency status of states, as we noted that a ten-year time frame 

might not reveal incremental increases in efficiency. Increasing the number of years analyzed 
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would allow us to construct a more clear pattern of efficiency and would allow us to consider 

whether the first-mover advantage is important in efficiency, i.e., once a state achieves efficiency, 

how likely is it to stay efficient? 

Another potential improvement to the study would be to include different environmental 

factors in the Tobit regression for efficiency determinants. The variable for startups proved 

minimally significant, and the variable for science and engineering faculty was never significant. 

In other words, we have not yet found the variables that capture the environmental impact on R&D 

efficiency, if indeed they exist.  

 

Future Research 

 In order to expand beyond the bounded DEA efficiency score, a DEA model based on 

“super efficiency” could give a fuller picture of the states on the efficiency frontier (Zhu, 2001). 

With the DEA model used in this paper, efficient states are not provided any “decision points,” 

while inefficient states are provided, through slacks created by the model, more than one means 

by which to increase efficiency.  

 

CONCLUSION 

 

 States vary in how much R&D funding they receive and in the amount of business outputs 

they produce. Our output-oriented data envelopment analysis model uses input-output ratios of 

state-level university data to create an efficiency frontier. DEA efficiency tables from 2006, 2009, 

2011, and 2015 show the changes in state efficiency and highlight that over time the same states 

remain on the efficiency frontier. Our Tennessee example demonstrates the efficient peers and 

slacks that are determined by the model to provide directions toward efficiency. In Tennessee’s 

case, the state could seek to increase S&E post docs, S&E graduates, and patents. 

 Our Malmquist Index breaks the increases in total factor productivity into four types of 

productivity—efficiency change, technical efficiency change, pure technical efficiency, and scale 

efficiency—in order to show which type drove increases in TFP over the years 2006 to 2015. We 

find that the 2009 to 2011 period had the largest scale efficiency and the smallest technical 

efficiency. We show that state-level TFP measures can serve as evidence for states that want to 

demonstrate that their academic R&D efficiency is improving even if they are not operating on the 

efficiency frontier.  

 The Tobit regression of determinants of efficiency highlights the importance of federal 

R&D funding ratio (RDCONC), R&D source diversity, and R&D intensity in a state. The 

environmental factors tested were lowly significant or not significant. This implies that universities 

can produce business outputs efficiently even in states lacking large numbers of R&D-related 

startups or high GDP levels. These results also suggest that funding decision- makers (federal 

government or industry groups) play a role in the efficiency of state-level academic R&D through 

the variables of concentration and funding diversity. 
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